pH Regulation in Adult Rat Carotid Body Glomus Cells
نویسندگان
چکیده
Address reprint requests to Dr. A. Roos, Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110. J. GEN. Pm'SlOL. © The Rockefeller University Press • 0022-1295/92/1010593/16 $2.00 Volume 100 October 1992 593-608 593 on Jne 5, 2017 D ow nladed fom Published October 1, 1992
منابع مشابه
Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
Carotid body chemoreceptors sense hypoxemia, hypercapnia, and acidosis and play an important role in cardiorespiratory regulation. The molecular mechanism of pH sensing by chemoreceptors is not clear, although it has been proposed to be mediated by a drop in intracellular pH of carotid body glomus cells, which inhibits a K+ current. Recently, pH-sensitive ion channels have been described in glo...
متن کاملpH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium [published erratum appears in J Gen Physiol 1993 Jan;101(1):following 144]
The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +...
متن کاملCarbon monoxide: a role in carotid body chemoreception.
Carbon monoxide (CO), produced endogenously by heme oxygenase, has been implicated as a neuronal messenger. Carotid bodies are sensory organs that regulate ventilation by responding to alterations of blood oxygen, CO2, and pH. Changes in blood gases are sensed by glomus cells in the carotid body that synapse on afferent terminals of the carotid sinus nerve that projects to respiratory-related n...
متن کاملSpermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca²(+) channels.
An increase in intracellular Ca²(+) is crucial to O₂ sensing by the carotid body. Polyamines have been reported to modulate both the extracellular Ca²(+)-sensing receptor (CaR) and voltage-gated Ca²(+) channels in a number of cell types. Using RT-PCR and immunohistochemistry, the predominant voltage-gated Ca²(+) channels expressed in the adult rat carotid body were L (Ca(V)1.2) and N (Ca(V)2.2)...
متن کاملCaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.
Arterial blood O2 levels are detected by specialized sensory organs called carotid bodies. Voltage-gated Ca(2+) channels (VGCCs) are important for carotid body O2 sensing. Given that T-type VGCCs contribute to nociceptive sensation, we hypothesized that they participate in carotid body O2 sensing. The rat carotid body expresses high levels of mRNA encoding the α1H-subunit, and α1H protein is lo...
متن کامل